Inhomogeneous random graphs are a prominent tool for modeling real-world complex networks as they manage to capture key concepts such as the scale-free property. In this talk we will focus on two particular inhomogeneous random graph models, the Norros-Reittu model and the random connection model. The Norros-Reittu model uses a deterministic vertex set and can be seen as a generalisation of the famous Erdős–Rényi graph. The random connection model on the other hand yields a spatial random graph, which leads to natural clustering effects. Our main goal is to determine the asymptotic behaviour of the size of the largest component as the number of vertices or the size of the observation window, respectively, goes to infinity.